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Fig. 1: Perceptive Humanoid Parkour (PHP) enables a Unitree G1 humanoid robot to execute highly dynamic, long-horizon
parkour behaviors using onboard perception. By composing various agile human skills via motion matching and a teacher-
student training pipeline, we train a single multi-skill visuomotor policy capable of complex contact-rich maneuvers including
(a) cat-vaulting over a short obstacle followed by dash-vaulting over a higher obstacle at approximately 3 m/s, (b) climbing
onto a 1.25m (96% of robot height) wall, and rolling down, (c) speed-vaulting over an obstacle at approximately 3 m/s, and
(d) a 60-second continuous traversal of a complex parkour course with autonomous skill selection and seamless transitions.

Abstract—While recent advances in humanoid locomotion have
achieved stable walking on varied terrains, capturing the agility
and adaptivity of highly dynamic human motions remains an
open challenge. In particular, agile parkour in complex environ-
ments demands not only low-level robustness, but also human-
like motion expressiveness, long-horizon skill composition, and
perception-driven decision-making. In this paper, we present
Perceptive Humanoid Parkour (PHP), a modular framework that
enables humanoid robots to autonomously perform long-horizon,
vision-based parkour across challenging obstacle courses. Our
approach first leverages motion matching, formulated as nearest-
neighbor search in a feature space, to compose retargeted
atomic human skills into long-horizon kinematic trajectories.
This framework enables the flexible composition and smooth
transition of complex skill chains while preserving the elegance
and fluidity of dynamic human motions. Next, we train motion-
tracking reinforcement learning (RL) expert policies for these
composed motions, and distill them into a single depth-based,
multi-skill student policy, using a combination of DAgger and RL.
Crucially, the combination of perception and skill composition
enables autonomous, context-aware decision-making: using only
onboard depth sensing and a discrete 2D velocity command,
the robot selects and executes whether to step over, climb onto,

vault or roll off obstacles of varying geometries and heights. We
validate our framework with extensive real-world experiments
on a Unitree G1 humanoid robot, demonstrating highly dynamic
parkour skills such as climbing tall obstacles up to 1.25m (96 %
robot height), as well as long-horizon multi-obstacle traversal
with closed-loop adaptation to real-time obstacle perturbations.

I. INTRODUCTION

Achieving the agility and adaptivity of human motion
in traversing complex terrains remains a central challenge
for humanoid robotics. Humans traverse challenging terrains
of drastically different dimensions by rapidly selecting and
chaining dynamic whole-body skills based on perceived envi-
ronmental context. Our goal is to endow humanoids with the
same capability. In this work, we study parkour as a concrete,
self-contained testbed for this broader objective.

Parkour highlights several core challenges. First, the robot
must perform highly dynamic and contact-rich skills, such as
climbing walls around or above its body height or vaulting
over obstacles within fractions of a second. This requires



effective control in the humanoid’s vast, high-dimensional
action space. Second, these skills must be tightly coupled
with exteroception, such as vision, to enable adaptation to
environmental variation and rapid reaction to unexpected per-
turbations. Furthermore, to generalize beyond isolated ma-
neuvers and traverse complex obstacle courses, the robot
must consolidate many highly dynamic skills into a single
visuomotor policy, which becomes increasingly difficult as the
number and diversity of required skills grow.

Human motion data has become essential for learning highly
dynamic humanoid behaviors. Prior work [20} 143] has used hu-
man motion data to successfully demonstrate highly dynamic
skills such as jumping, rolling, and flipping. However, highly
dynamic motion data is inherently scarce: capturing fast,
contact-rich maneuvers typically requires specialized setups
and careful curation, so datasets often include only one or
two demonstrations per skill, each lasting just a few seconds.
This scarcity is not unique to parkour but applies broadly to all
dynamic human skills. Yet long-horizon tasks such as parkour
require both rich within-skill variation that adapts to how the
robot approaches an obstacle, and smooth, natural transitions
between multiple skills across complex courses.

To address this challenge, we adopt motion matching [5. 9]
as a simple yet powerful mechanism. Motion matching synthe-
sizes long-horizon motion by retrieving and stitching motion
fragments via nearest-neighbor search in a designed feature
space. Crucially, this process densifies a sparse motion library
by producing diverse transitions across approach distances,
headings, and timing, while preserving the realism of captured
motions. In our framework, motion matching enables the gen-
eration of a large set of obstacle-adaptive, long-horizon kine-
matic reference trajectories for downstream policy learning.

Learning a visuomotor policy that executes dozens of highly
dynamic skills requires perceptive inputs that can be efficiently
simulated and reliably transferred to the real world. To improve
training efficiency, prior work typically trains privileged state-
based experts in simulation and distills them into vision-based
students using DAgger [32]]. However, for humanoid parkour,
pure imitation loss is limited: compounding errors can quickly
derail highly dynamic skills such as climbing and vaulting. To
address this, we augment distillation with an RL objective that
provides task-level corrective feedback, steering the student
towards successful traversal and yielding a scalable recipe
across many skills.

To this end, we present Perceptive Humanoid Parkour
(PHP), a modular framework that integrates human motion
priors, long-horizon skill composition, and perceptive control.
We first retarget human motion data into a library of robot-
compatible atomic skills using OmniRetarget [43]. We then
employ motion matching to compose these skills into a diverse
set of long-horizon kinematic trajectories. These composed
trajectories preserve agility and smooth transitions, while
providing sufficient variation to learn adaptive long-horizon
behaviors. We then train motion-tracking expert policies and
distill them into a single depth-conditioned, multi-skill policy
that enables the robot to autonomously select and transition

among behaviors, such as stepping, climbing, and vaulting,
using onboard depth sensing.
Our contributions are threefold:

1) An efficient kinematic skill composition pipeline that
chains retargeted human motions into diverse long-
horizon trajectories via motion matching.

2) A scalable training framework that distills multiple ex-
perts into a single visuomotor policy, enabling seamless
transitions across diverse parkour skills.

3) Successful zero-shot sim-to-real transfer of depth-based
policies on a physical humanoid robot, achieving highly
dynamic parkour over various obstacles.

II. RELATED WORKS

The goal of parkour is to traverse challenging terrains
agilely by perceiving, reacting, and chaining skills for different
obstacles. We review related work in these areas.

A. Perceptive Terrain Traversal for Legged Robots

While blind locomotion has achieved strong robustness
on moderately structured terrains such as slopes and stairs
on quadrupedal robots [19, 28| 21} [18], perception enables
traversal of substantially more challenging terrains [26]. In par-
ticular, perception is critical for handling sparse footholds [1}
44| 146] and discontinuous terrain such as gaps and tall ob-
stacles [1} 45]. Building on these capabilities, prior work has
enabled quadrupeds to traverse parkour-style terrain courses
with consecutive gap jumps and obstacle climbs [} 23] [13}33]].

However, translating the success on quadrupeds to hu-
manoids remains challenging. While quadrupedal parkour
skills can often be trained from scratch via reward shaping, this
approach scales poorly to humanoids due to high-dimensional
whole-body control. As a result, prior perceptive humanoid
locomotion has primarily focused on lower-dynamic terrain
traversal, including stair climbing [22], walking on sparse
terrain (37, [12 2], and stepping onto low platforms [52].
Moreover, to reduce exploration difficulty in RL when training
from scratch, most works adopt a teacher-student pipeline
where an expert is trained with privileged states and a vision-
based student is distilled via DAgger [8| [33]. We follow this
paradigm but find pure DAgger insufficient for highly dynamic
humanoid skills, and therefore augment it with RL to improve
distillation performance. Note that this differs from the fine-
tuning stage in [33], which primarily focuses on adapting an
already performant DAgger-distilled policy to unseen terrains.

B. Humanoid Skill Chaining with Human Motion Data

Using human motion references effectively reduces reward
engineering and produces agile, natural humanoid behav-
iors [20l 43 48l 29| 40, (7], but comes at the cost of more
challenging skill chaining. With reward shaping, quadrupeds
can learn transitions either implicitly by a single policy [8}
230112} 2]], or through specialist switching or distillation using
a shared locomotion state [13} 51} |6 [33]. In contrast, human
motion data spans heterogeneous styles that can lie in disjoint
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Fig. 2: Perceptive Humanoid Parkour overview. Atomic parkour skills are composed into long-horizon kinematic reference
trajectories via motion matching. Single-skill teacher policies are trained with privileged information using RL-based motion
tracking. Multiple teachers are distilled into a single depth-based student policy using a hybrid DAgger and RL objective. This
scalable recipe enables zero-shot sim-to-real transfer onto a physical humanoid robot that adaptively traverses through complex
terrains by autonomously executing highly agile parkour skills using onboard perception.

regions of the state space, making long-horizon composition
a fundamental challenge.

AMP [31]] addresses this challenge by training a single
policy to learn a distribution of skills, allowing transitions
to implicitly emerge from RL exploration, but replaces hand-
crafted rewards with a learned style reward from motion
data. While promising in animation and quadrupeds [42, [39],
humanoid hardware demonstrations have so far been limited
to less agile skills such as walking, stepping, and box lift-
ing [50, 35, 38].

To address the transition problem more explicitly, another
line of work generates intermediate kinematic trajectories us-
ing learned kinematics models (e.g., MDM [36]) and executes
them with tracking controllers (e.g., DeepMimic [30]). These
kinematics models can provide smooth transition references at
test time [41] 24 or training time [16]], but their tra-
jectory quality degrades significantly in the low-data regimes
common in parkour. This often requires either costly iterative
co-training to recover usable motion or receding-horizon
replanning [[15], which is costly with perception in real time.

In contrast, we adopt motion matching [5} [14] as a sim-
ple yet highly effective source of kinematic references for
humanoid skill chaining. Motion matching has been widely
adopted in video games and character animation for its
simplicity and practical controllability, while still producing
high-quality motion [5, [I1]. While a mature technique in
animation [3]], it has so far been applied in robotics only
to relatively simple quadruped behaviors [17]. In this work,
we show that it is a powerful tool for chaining dynamic
and expressive human skills over difficult terrain courses for
humanoid robots, substantially improving both success rate
and transition smoothness.

III. ADAPTIVE AND AGILE LONG-HORIZON PARKOUR

A. Overview

The objective of this work is to enable a humanoid robot
to execute agile parkour behaviors over multiple obstacles
autonomously using onboard perception. We first generate
long-horizon kinematic reference motions via motion match-
ing by composing locomotion with atomic parkour skills.
We then train motion-tracking expert policies with privileged
observations in simulation, and finally distill them into a depth-
based student policy using DAgger in combination with a
PPO objective, enabling zero-shot sim-to-real deployment. An
overview of the system is shown in Fig. 2]

B. Skill Composition via Motion Matching

Motion matching [5} 9] is a technique originally developed
in the video game industry for interactive character control,
where motion is generated online by selecting, at each frame
or transition point, the animation frame from a large database
whose motion features best match the current pose and desired
future behavior. In this work, we adopt motion matching as an
offline motion synthesis module for composing scarce atomic
parkour skills with locomotion into long-horizon references.

1) Basic motion matching: We briefly summarize the stan-
dard motion matching formulation; implementation details are
provided in Appx. [A] Let a motion database consist of N
frames, where each frame ¢ is associated with a kinematic
pose q; and a matching feature vector x; derived from
g;. Following [14], x; concatenates (i) short-horizon future
trajectory positions and facing directions, (ii) local foot joint
positions and velocities, and (iii) root velocity, all expressed
in the character’s local coordinate frame.



When generating transitions, given the current character
state and a desired 2D velocity command, we first convert the
command into a desired future trajectory and facing directions,
and then concatenate these with foot positions, velocities and
root velocities from the current state to form the query feature
;. The best matching frame is then retrieved via

-k : ~ 2
iy arggmrtl | — ;||°, (1

where C; denotes the search window of the user-specified
upcoming skill. This nearest-neighbor search is performed pe-
riodically (every M frames) or when the commanded velocity
changes significantly. After selecting 4}, the system transitions
playback to frame 7} and plays forward from that frame until
the next search is performed. A short blending window is
applied around transitions to avoid discontinuities.

2) Long-Horizon Parkour Trajectory Synthesis: Since lo-
comotion (walking and running) serves as a ubiquitous and
naturally reusable connector between more challenging park-
our skills, we generate long-horizon parkour trajectories by
composing locomotion segments with short parkour skill
clips in the form of Locomotion — Parkour Skill —
Locomotion. By routing all skills through a shared locomo-
tion manifold, this formulation enables consistent transitions
across heterogeneous skills without requiring specific, hand-
captured transitions between every possible skill pair, and
supports scalable composition of long-horizon behaviors.

We maintain (i) a locomotion database Dy,
{(zlc0, g!°*®)} and (ii) a set of skill databases {Dy}, one
for each parkour skill k. Each skill clip is paired with a
corresponding terrain asset. For every atomic skill clip in Dy,
we manually annotate the skill start and end frame indices
(Sk,exr). We additionally define a pre-skill entry window of
skill-dependent length Hj:

gk ::[sk_Hkv Sk], (2)

which corresponds to the approach phase right before the
main contact-rich maneuver, where transitioning into the clip
is meaningful. For example, for a vault clip, & captures the
final approach steps before takeoff, avoiding transitions outside
the intended approach phase.

Locomotion mode. During locomotion, we run standard
motion matching via Eq.(I) with C; = Dio. and advance
playback sequentially as described in Sec.

Locomotion — SKkill transition. When a transition into
skill & is required, we restrict the search window C; to the
pre-skill entry window &, and transition to the matched entry
frame through Eq.(I). After the transition, the skill clip is
replayed sequentially until the annotated end frame ej. At the
switch, we place the paired terrain by applying the terrain-
to-root offset at the matched entry frame in the reference
clip to the robot’s current root pose. During skill execution,
we disable further motion matching and simply advance the
playback index to preserve the contact-rich human motion.

Skill — Locomotion transition. After reaching ey, we
return to locomotion by resuming motion matching via Eq.(T)
with C; = Diyeo, and continue sequential playback.
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Fig. 3: Diverse variations of composed parkour skills
synthesized via motion matching. (a) Different approach
distances trigger varying stride phases and entry poses. (b)
Diverse locomotion speeds, directions, and durations. (c) Ran-
domized terrain poses and shapes.

Dataset construction. We synthesize long-horizon refer-
ence trajectories by rolling out the motion-matching compo-
sition procedure as follows. As visualized in Fig. 3[b), each
trajectory starts from a standing state and enters a locomotion
phase driven by 2D velocity commands sampled from two
speed levels (Low (1m/s), high (2m/s)) and five turning direc-
tions (—90°, —45°, 0°, 45°, 90°). We then transition into skill
k and replay the skill clip sequentially; during the skill, we set
the command to go straight (0°) while keeping the same speed
level as the preceding locomotion segment. After reaching
the annotated end frame e, we return to locomotion and
continue for an additional 2 seconds before stopping. Through-
out synthesis, we record the per-timestep velocity commands
alongside the generated kinematic reference poses {g;}, and
use these paired trajectories for subsequent policy training.

Transition Density. Motion matching naturally induces a
high density of transitions by allowing a skill to be entered
from multiple locomotion states that are nearby in the motion
feature space. We exploit this to generate diverse skill en-
trances spanning different approach distances and stride phases
(e.g., adding a preparatory step before a jump, or initiating
a vault from different phases of a running gait), densifying
the distribution of pre-skill states. As illustrated in Fig. [3]
(a), varying the initial approach distance (e.g., 3.9 m vs.



4.8 m) forces the motion matching engine to select different
stride sequences, resulting in distinct entry poses such as left-
leg versus right-leg leads. To prevent non-causal shortcuts
(e.g., relying on elapsed time or step count), we randomize
the pre-skill locomotion duration by sampling it uniformly
from [0.1, 3] s, with an average interval of 0.3s. Such diverse
motion-terrain pairs encourage context-based reaction, and are
critical for learning a policy that can reliably trigger the correct
skill under varying distances and timings.

Terrain Randomization. To improve robustness beyond the
training obstacles while keeping the reference feasible, we ran-
domize obstacle geometry and pose around each synthesized
trajectory. Specifically, obstacle width is sampled from the
minimum required by the reference up to 1.5 m; the remaining
dimensions are perturbed within £5 cm; and obstacle yaw
is randomized within +45°, as illustrated in Fig. [3(c). This
exposes the policy to variations in obstacle shape and pose
without invalidating the underlying reference.

Distractors. We place distractor boxes with random sizes
and poses near the reference trajectory to improve robustness
to irrelevant objects and reduce overfitting in the real world.

C. Learning a Highly-Dynamic Visuomotor Policy

Our goal is to train a single perceptive policy capable of var-
ious long-horizon parkour skills. Commanded by a target ve-
locity, the humanoid will autonomously perform various park-
our skills based on the obstacles it perceives. Because the skills
are highly dynamic, we train skill-specific experts to achieve
high motion quality and then distill them into a single visuo-
motor policy. To ensure scalability, we use a unified expert
and distillation formulation without motion-specific tuning.

1) Training Expert Policies with Motion Tracking: We
follow BeyondMimic [20] and OmniRetarget [43] for motion
tracking, and refer readers to these prior works for details.

Observations include reference joint position/velocity, ref-
erence pelvis pose error, pelvis linear/angular velocity, joint
position/velocity, and the previous action. We additionally
provide the expert with a 0.7 m x 0.7 m height scan, allowing
it to adapt to terrain randomizations.

Unlike [43], we enable global tracking with privileged
observations (pelvis global position and velocity) so the expert
can learn recovery behaviors. This is important because the
reference motion is tightly coupled with the terrain, meaning
small drift or timing errors can quickly accumulate and must
be corrected to stay on the intended trajectory. While these
privileged states are not available on hardware, they can be
inferred from visual inputs by the student policy.

Adaptive Sampling is essential for learning difficult skills
in expert training, which prioritizes sampling from regions that
fail more frequently. For example, without it, the high-wall
climbing expert fails to converge to a meaningful behavior.

Rewards, Terminations, and Domain Randomization
follow BeyondMimic [20]: DeepMimic-style tracking rewards
with action rate, joint limits, and collision penalties, tracking-
based early termination, and lightweight randomizations.

Actions are joint PD targets normalized by a fixed action
scale. Due to challenging RL exploration, we set the action
scale to 1 for all experts, instead of the heuristics used in [20].

2) Distilling a Unified Student Policy with DAgger and
RL: A common approach for learning a unified policy from
multiple experts is to apply DAgger-style imitation learn-
ing [32, 18 151} 133} 20]. While effective for easier motions
such as stepping, we find that DAgger alone is insufficient
for highly dynamic skills such as climbing and vaulting.
These skills depend on brief, high-magnitude torque bursts,
but per-step imitation objectives like DAgger do not account
for episode outcomes and therefore do not explicitly favor
such high-torque actions. For example, actions that result in
higher or lower root positions that are symmetric about the
reference may receive identical DAgger loss, even though only
the higher-root trajectory successfully clears the obstacle.

To address this, we apply PPO alongside DAgger with a
curriculum,

L = Appo Lppo + Ap Lp, Adepo+Ap =1, (3

where A\ppp and Ap are their curriculum weights. Note that the
primary role of PPO is to provide a success-driven signal that
encourages exploiting expert behaviors, such as high-torque
actions, rather than exploring beyond the expert skill distri-
bution. This hybrid setup substantially improves the unified
policy’s performance on diverse, highly dynamic skills.

Observations, Actions, and Domain Randomization. The
policy observes proprioception signals including pelvis gravity
vector and angular velocity, joint positions and velocities, and
the previous action. For vision, we use depth images rendered
with Nvidia WARP [25]] for high-throughput training. The
policy also receives velocity commands defined in Sec.
The action space and domain randomization for sim-to-real
transfer are identical to those used in expert training setup.

Camera modeling and depth artifacts. We calibrate the
simulated camera by matching robot self-visibility across a set
of poses in simulation and hardware using ROI overlap, and
randomize camera extrinsics within 2.5 cm translation and 2.5°
rotation around the calibrated value to improve robustness to
viewpoint shifts and mounting variability. We inject realistic
depth noise following prior work [33]], but exclude Gaussian
blur since it can obscure obstacles at high speed. Finally, we
randomize observation delay between 60 ms and 80 ms to
simulate hardware latency fluctuations.

Curriculum. Since PPO gradients are noisy in the early
stages and can otherwise undermine distillation, we apply a
warmup curriculum that gradually shifts from DAgger to PPO.
The curriculum includes three parts.

First, we linearly tune down Ap in Eq. during the first
half of training, capped at 0.1: Ap (k) = max (0.1, 1-— KL/Q),
where k is the current iteration and K is the total iterations.

Second, left-right symmetry introduces multimodality:
many skills admit two equally valid mirrored executions, for
example, clearing a hurdle with either the left- or right-
leg lead, while the reference trajectory represents only one



Fig. 4: Side-by-side comparison of high-climb agility. The
robot climbs onto a 1.25m wall within 3.63s.

of them. As a result, the distilled policy may perform the
mirrored mode, which still completes the skill but incurs a
large tracking error and would be terminated incorrectly. This
spurious failure signal can cause high reward variance for PPO.
To mitigate this issue, we relax the termination threshold from
0.5 m for the expert to 1 m using the same linear schedule, so
mirrored modes are not terminated prematurely.

Finally, we enable adaptive learning rate and KL-based
exploration control only when Appo exceeds 0.1.

Adaptive Sampling of rollout start points is disabled during
student training. While it helps experts focus on failures to
learn more difficult segments, it can undersample “borderline”
clips that do not fail in simulation but exhibit jittery behavior,
which often leads to large sim-to-real gap on hardware. To
further avoid data imbalance across skills, we sample each
skill evenly and sample uniformly within each skill.

IV. EXPERIMENTS

We evaluate the proposed framework through a series of
simulation and real-world experiments on a Unitree G1 hu-
manoid (1.3 m tall with 29 DoFs). For training, we use a 3-
layer CNN and a 5-layer MLP with hidden sizes [2048, 1024,
512, 256, 128], trained with 16,384 parallel environments.
Both expert and student policies are trained for 20K iterations.

A. Real-World Results

We evaluate our system on real-world parkour tasks requir-
ing both highly-dynamic individual skills, long-horizon multi-
skill composition and adaptation to environmental changes. All
skill execution is autonomous, while only simple 2D velocity
commands are provided for navigation.

1) Human-Level Agility: We first demonstrate that the robot
can execute highly dynamic parkour skills, including a direct
comparison with a human parkourist on a challenging high-
wall climb.

High-Wall Climb with Human Comparison. We compare
the robot’s high-wall climb against a human performing the
same maneuver [34]. While often considered a fundamental
parkour technique, the high-wall climb demands substantial
upper-body strength and precise whole-body coordination, and
remains difficult for untrained individuals. Despite this, the
robot successfully performs the climb at a pace comparable
to the human. As shown in Fig. [ the robot executes a fast
and coherent sequence with closely matched timing across

key events (toe-off — pull-up — swing — stable stand). For
a 1.25m wall (96% of the robot’s height), the robot climbs
onto the platform in 3.63 s measured from toe-off.

Additional Parkour Skills. We demonstrate additional
highly dynamic parkour skills that require rapid contact tran-
sitions and momentum preservation. As shown in Fig. [5(a),
the robot clears a 0.4 m-high, 0.5 m-long obstacle within 0.8 s
from toe-off to toe-on, while covering more than 2 m forward
(154% of its height). The motion reaches a peak forward speed
of 3.41 m/s with an average speed of 2.53 m/s, highlighting its
effective momentum preservation across the contact. Fig. [5(b)
shows a drop landing from a 1.25 m platform. Upon landing,
the robot flexes its lower-body joints to absorb impact and
stabilize its posture.

2) Multi-Obstacle Course: A key strength of our frame-
work is that the policy generalizes to complex, multi-obstacle
courses despite the training data containing only single-
obstacle traversal. This capability emerges from motion-
matching-based composition, which synthesizes long-horizon
reference trajectories that explicitly chain skills through shared
locomotion segments and expose the policy to diverse ap-
proach distances and timings. As a result, the policy learns
to execute skills reliably across varying obstacle sequences
without explicit multi-obstacle supervision.

Various Skills and Adaptivity to Obstacle Changes.
As shown in Fig. [5[(c), the robot composes multiple skills,
including stepping, low and high wall climb, into a continuous
run over courses with several obstacles. The visuomotor policy
generates transitions online, enabling smooth skill switching
throughout the traversal. We further demonstrate closed-loop
adaptivity by randomly displacing multiple obstacles by ap-
proximately 0.5m during execution. The policy adapts by
adjusting its approach and maneuver timing, allowing the robot
to continue and complete the traversal in response to these
obstacle changes. These results demonstrate the adaptivity of
our policy in long-horizon terrain traversal.

B. Quantitative Results in Simulation

1) Experiment Setup: We evaluate all methods using suc-
cess rate on parkour traversal tasks. Each task requires the
robot to move forward at a fixed command speed (1.0m/s
or 2.0m/s) and clear a single obstacle of a specified height
and 20° yaw randomization. To vary approach conditions,
the humanoid is initialized at a random distance in front of
the obstacle: for 1 m/s tasks, distances are sampled uniformly
from 1.5m to 3.0 m; for 2m/s tasks, from 3.0m to 4.5 m. For
each task, we evaluate 100 obstacle instances with different
initial distances. A trial is successful if the robot traverses the
obstacle and travels an additional 1.5 m without falling within
a fixed time horizon. We report average success rates of 5
trials per obstacle per task (500 trials total per task). We train
all variants with the full skill set, with details in Appx[B]

2) Baseline Comparison: We evaluate the contribution of
three key components: human reference motions, motion-
matching-based skill composition, and the two-stage teacher-
student training framework, by comparing our method against



(b)

Fig. 5: Hardware results demonstrating agile, long-horizon parkour behaviors, including (a) a cat vault, (b) a drop landing from
a 1.25m wall, and (c) a 48-second terrain traversal with online adaptation to real-time obstacle displacement.

TABLE I: Baseline success rate on parkour tasks with different
commanded speeds and obstacle heights.

Method 1.0 m/s 2.0m/s

36cm 58cm 76ecm 36cm 58cm 76cm
Velocity Tracking 1.00 0.00 0.00 1.00 0.00 0.00
Uncomposed Data 0.06 0.02 0.00 0.37 0.27 0.07
End-to-end Depth 0.95 0.07 0.08 0.78 0.19 0.14
Ours 1.00 0.99 0.95 1.00 0.99 0.95

the following baselines, as shown in Table

o Velocity Tracking. We train a humanoid to traverse
terrain using IsaacLab’s standard velocity-tracking
RL pipeline. The policy is learned purely with reward
shaping, without any human reference motion.

« Uncomposed Motion Data. This baseline removes mo-
tion matching, training instead on uncomposed locomo-
tion data and atomic parkour skill clips.

o End-to-end Depth Policy. This baseline removes distil-
lation and trains a single depth-based visuomotor policy
end-to-end on the motion-matching data, using the same
observations as the student and the same motion-tracking
reward as the experts.

We found that the velocity-tracking baseline achieves sim-
ilar performance to prior reward-shaping works and
succeeds in traversing the 36 cm obstacle, but fails on higher
obstacles. Specifically, it largely relies on foot-only stepping
and does not discover whole-body climbing strategies that use

the arms for support, highlighting the limitations of reward-
shaping RL alone for highly dynamic parkour.

The uncomposed motion data baseline performs poorly
despite access to atomic skills, showing that isolated motions
are insufficient. A common failure mode is that the robot walks
up to an obstacle but fails to climb or jump over it. Without ex-
plicit long-horizon composition, the policy neither experiences
skill transitions during training nor observes obstacles during
the walking phase to prepare the appropriate upcoming skill. In
comparison, our motion-matching-based approach addresses
this limitation by both generating coherent long-horizon skill
composition with smooth transitions and exposing the policy
to diverse visual contexts during skill execution.

While end-to-end depth-based training can handle low
obstacles, its performance degrades on more challenging tasks,
suggesting difficulty in RL exploration when training from
scratch. In contrast, our expert-distillation pipeline achieves
substantially higher success rates across obstacle heights,
particularly for highly dynamic skills.

3) Ablation Study: We conduct ablation studies to study the
effect of motion-matching reference data density, training scal-
ability, and the role of RL during policy distillation (Table [II).

Motion Matching Density. We hypothesize that diversity
in motion-matching data, especially approach distances, is
critical for accurate timing and task success. To test this, we
ablate approach-distance coverage in the reference dataset:

o Extreme Distances. Only minimum and maximum ap-



TABLE II: Success rate on parkour tasks with different motion
matching densities and RL strategies during distillation.

Method 1.0m/s 2.0m/s

58em 76ecm 94cm 36ecm 58cm 76cm
Extreme Distances 0.99 0.62 0.64 0.98 0.60 0.58
Half Density 0.95 0.32 0.57 0.99 0.85 0.81
DAgger Only 0.16 0.03 0.12 0.63 0.09 0.10
DAgger & Alive Reward 1.00 0.90 0.96 0.94 0.91 0.84
DAgger & Root Tracking 1.00 0.79 0.75 1.00 0.92 0.87
1/4 Training Envs 0.97 0.00 0.59 0.94 0.65 0.58
1/2 Training Envs 0.94 0.60 0.68 0.97 0.79 0.75
3-layer MLP 0.99 0.02 0.00 0.98 0.89 0.81
4-layer MLP 1.00 0.94 0.08 1.00 0.94 0.88
Ours 0.99 0.95 1.00 1.00 0.98 0.90

proach distances.
« Half Density. Randomly selected half of the full motion-
matching data.

Using Extreme distances data leads to reduced success
rates across all tasks, as the policy fails to generalize
to intermediate distances where contact-timing is critical.
Training on Half density data generally yields lower success
rates on harder skills, especially when the remaining samples
are skewed toward one end of the distance range. For example,
in the 1.0m/s climbing task on 76 cm and 94 cm obstacles,
reduced local density leads to unreliable hand-placement
timing. In contrast, the full dataset densely covers approach
conditions, enabling robust skill execution across varying
approach distances.

Training Scalability. We ablate the number of parallel train-
ing environments and model capacity to assess the scalability.

o 1/4 Training Envs. Use 1/4 of the training environments.

o 1/2 Training Envs. Use 1/2 of the training environments.

e 3-Layer MLP. Use a 3-layer MLP with hidden sizes of
[512, 256, 128].

e 4-Layer MLP. Use a 4-layer MLP with hidden sizes of
[1024, 512, 256, 128].

Unlike training from scratch, where additional rollouts often
yield diminishing returns due to exploration limits, our distil-
lation framework scales favorably with both model capacity
and rollout throughput. Increasing the number of parallel
environments or using a deeper network generally improves
success, especially on more challenging parkour tasks.

RL in Distillation. We ablate the RL objective and its
reward design in the distillation stage to understand its role.

o DAgger Only. Remove the RL loss during distillation.

o DAgger + RL Alive Reward. Use only an alive/progress
reward, without motion-tracking terms.

o DAgger + RL Root Tracking Reward. Use a root-
tracking reward instead of full whole-body tracking.

We find that RL is critical for effective distillation. The
DAgger only student exhibits a clear performance drop,
indicating that DAgger alone is insufficient to capture highly
dynamic skills even with strong experts. For example, on
the 76cm obstacle, the DAgger student consistently stalls
at the pull-up phase: although it learns the accurate hand

placement, it fails to produce the brief, high-magnitude torque
burst needed to lift the torso. As discussed in Sec. [III-C2|
this likely occurs because the decisive torque burst spans only
a few timesteps, and per-step imitation loss barely penalizes
slightly underestimated actions. In contrast, since RL accounts
for episode success, it encourages torque bursts that are more
likely to complete the pull-up, yielding both higher reward and
lower DAgger loss.

We further evaluate how sensitive the DAgger+RL stage is
to reward design. Interestingly, using root tracking or even
only an alive reward achieves success rates comparable to
whole-body tracking on difficult skills. This suggests that,
when co-trained with DAgger, RL is relatively robust to reward
choice and mainly acts as a success-driven exploitation signal
that compensates for DAgger’s underestimation, rather than
relying on detailed task-specific shaping. Accordingly, while
we use whole-body tracking in this work, a simple alive reward
may suffice when scaling to larger skill sets.

In addition, our approach differs from prior work that first
trains a strong DAgger policy and then applies a separate RL
fine-tuning stage [33l]. Here, we use RL during distillation
to correct imitation-induced conservatism and improve skill
learning. We also find that the DAgger term must remain
active throughout training: if we drop the DAgger loss after
the curriculum and continue with pure RL, the policy often
develops jittery, unnatural behaviors, suggesting that in a
high-dimensional action space the behavior cloning objective
provides a critical regularization for RL.

V. CONCLUSION

We have presented Perceptive Humanoid Parkour, a modular
framework that enables humanoid robots to autonomously
execute long-horizon, highly dynamic parkour behaviors using
onboard perception. By combining motion-matching-based
skill composition with a teacher-student RL pipeline, our ap-
proach preserves the agility of human motions while enabling
perception-driven adaptation to diverse obstacles. We find
that dense motion matching is critical in providing coherent
long-horizon references and exposes the policy to a wide
range of approach conditions, while augmenting distillation
with RL transfers the capability from single-skill, privileged-
information experts to the multi-skill, depth-based student
efficiently. Through extensive simulation studies and zero-shot
deployment on a Unitree G1 robot, we demonstrate state-of-
the-art agile, adaptive, whole-body parkour in the real world.

While our pipeline enables long-horizon, highly dynamic
humanoid parkour, it currently lacks semantic scene under-
standing. Incorporating richer conditioning signals, such as
language, could enable finer control over diversity and styles.
In addition, our real-world capabilities are constrained by
perception and hardware. With a short-range, narrow field-
of-view camera at a high running speed, obstacle geometries
may not be visible sufficiently early, forcing the robot to
commit under perceptual ambiguity. Improved sensing and
semantic scene understanding could reduce this ambiguity
and support richer context reasoning. Finally, our hardware



lacks sufficiently strong hands or grippers for interactions with
edges and bars to be tested, preventing more extreme climbing
beyond the robot’s height or hanging maneuvers.
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APPENDIX

A. Motion Matching Implementation Details

This section provides implementation details for the motion
matching procedure used to synthesize long-horizon parkour
reference trajectories.

1) Motion Database and Feature Precomputation: All mo-
tion clips are first retargeted to a 29-DOF Unitree G1 hu-
manoid using OmniRetarget [43] and represented as frame
sequences. At each frame ¢, we store the robot configuration
q; = (pi,7i,0;), consisting of the root translation p; € R3,
root quaternion 7; € R*, and joint angles 0, € R?*. For
each frame, we also precompute a matching feature vector
x; derived from q;. Following [14], ; € R?" is expressed in
the character’s local coordinate frame and consists of:

« Future root trajectory t; € R'?: Planar root positions
and facing directions at 0.33s, 0.67s, and 1s into the
future.

o Local foot state f; € R'2: Positions and linear velocities
of the left and right feet expressed in the root frame.

« Root velocity h; € R3: Root linear velocity.

To improve data coverage, we augment the motion database
by mirroring all motion clips. For parkour motion clips, we
manually fit a box-shaped terrain aligned with each motion.

2) Query Feature Construction: At runtime, a query feature
&4 is constructed from the current robot configuration g; and a
2D velocity command. We first extract the kinematic features
from g; to form the pose-based part of the query, namely the
local foot state ft and the root velocity h.. We then compute
the short-horizon future root trajectory from the 2D velocity
command to form the command-based part ;.

Following [14]], we convert the 2D velocity command into a
future root trajectory using a critically damped spring model.
We apply the spring to (i) the 2D root velocity and (ii) the
root heading direction. The target 2D velocity is set to the
commanded 2D velocity u$™ € R?. The target heading 1)§™
is set to atan2(ug™d, ug™d).

Critically damped spring closed form. Let s denote the
spring position and s its velocity, with goal sg,, and damping
parameter y > 0. Define jo = So — Sgou and ji1 = 80 + y Jo.
Then the spring state at any future time 7 admits the closed
form

S(T) =e 7 (.70 + le) + Sgoal- €]

Planar position from target velocity. For planar root
translation, we use the spring in velocity space: the spring
“position” corresponds to planar velocity (and its derivative to
acceleration). We obtain future root positions by integrating
the closed-form velocity:

7
76

p(T) = po— ” —Jo—TJ1 e YT J1 Jo cmd

+ = ™,
vy
®)

—yr

applied component-wise in the plane.
Heading direction from target heading. For rotation, we
apply the spring directly to the heading angle ¢ toward $™

and evaluate the resulting ¢ (7) at the same horizons via Eq. (E])
(no integration is needed).

We evaluate at 7 € {0.33,0.67,1.0} s, and transform the
resulting future positions p(7) and facing directions into the
character’s local coordinate frame to form the future trajectory
feature t}.

3) Transition Smoothing via Inertialization: To ensure
smooth transitions when switching the playback index to a
newly retrieved frame, we adopt inertialization [4]]. The key
idea is to compute an offset between the currently playing
motion and the target motion at the transition instant, apply this
offset after switching so the output remains continuous, and
then gradually decay the offset to zero. We decay this offset
using the same critically damped spring model as in Eq. (),
but with the goal set to zero.

B. Skill List and Training Implementation Details

1) Skill List: Our motion library includes locomotion and
a set of atomic parkour skills. Locomotion provides a shared
transition manifold and includes standing, walking, and run-
ning motions spanning commanded speeds from 0.8 to 3.5 m/s.
Most parkour skills are instantiated at 1.0 m/s and 2.0 m/s. We
additionally include a single 3.0 m/s cat-vault skill to cover
extreme-speed vaulting behaviors. Table summarizes the
full skill list and the total duration of motion clips for each
category.

2) Motion Tracking Details: Specific reward formulations
and domain randomization settings used for expert policy
learning from [20] are summarized in Table [IV] and Table
for reference.

3) Distillation Details: During student training, we relax
the termination conditions relative to the expert to prevent
premature termination of valid but mirrored executions. While
this improves PPO stability, the student may visit states that are
out-of-distribution for the expert policies, which were trained
under the original termination thresholds and may not provide
meaningful actions in these regimes. In particular, when the
student violates the expert’s original termination condition but
remains within the relaxed one, querying the expert would
yield unreliable supervision. To avoid introducing incorrect
DAgger signals, we disable the DAgger loss at such timesteps
and rely solely on the PPO objective.

For depth sensing, beyond the aforementioned camera noise,
we also add a random depth offset within £3 cm and inject
i.i.d. Gaussian noise with a standard deviation of 3 cm into the
depth observations during training. The onboard depth camera
operates at 30 Hz.

4) Training Hyperparameters: We include all hyperparam-
eters for two-stage training in Table for reference.

C. Details for Baselines

1) Velocity Tracking Baseline: To show the importance
of human reference motion in our framework, we include a
standard reward-shaping velocity-tracking baseline that learns
locomotion purely from handcrafted rewards and a terrain



Skill Duration (s)
Locomotion

Locomotion 495.5
Parkour skills @ 1.0 m/s

Step (36 cm) 2.2
Climb (58 cm) 12.1
Climb (76 cm) 8.8
Climb (94 cm) 10.3
Parkour skills @ 2.0 m/s

Step (36 cm) 1.6
Climb (58 cm) 6.1
Climb (76 cm) 4.4
Climb (94 cm) 5.2
Climb (125 cm) 5.9
Dash Vault 5.0
Speed Vault 3.1
Parkour skills @ 3.0 m/s

Cat Vault 1.5

TABLE III: Motion clips used in our motion library.

curriculum, without any motion imitation or human refer-
ence trajectories. We follow IsaacLab’s standard rough-terrain
velocity-tracking recipe using its Unitree G1 rough-terrain
conﬁguratio , which is widely used for humanoid locomo-
tion and terrain traversal and is largely consistent with state-
of-the-art reward-shaping-based setups [13]]. In alignment with
prior works [52| [13], we also employ a terrain curriculum
to ease learning. Specifically, we gradually increase terrain
difficulty from 0.3m to 1.0m over 10 levels (with a 2m run-
up), providing a smooth progression of tasks that helps the
policy bootstrap stable locomotion on easier terrain before
tackling harder contact and balance challenges as the terrain
becomes progressively harder. The curriculum advances the
robot to a harder level once it achieves sufficient success
on the current level, and moves it back to an easier level
if its performance drops. Notably, different from our student
policy which relies on an onboard depth camera for sensing,
this baseline directly receives a local terrain height map (i.e.,
privileged height observations from simulation), which has
been shown highly effective in prior parkour systems [13}[33].

2) AMP Baseline: Since AMP [31] is a popular algorithm
for chaining skills with human reference data, we also im-
plemented an AMP baseline by following the MimicKitE]
AMP implementation released by the original AMP authors.
In our experiments, this baseline can walk stably and track the
commanded velocity, but it does not perform well on obstacle
traversal: it fails on most tasks, especially the harder ones,
which is broadly consistent with prior reports that AMP can
be difficult to extend to agile motions [49]. At the same time,
we recognize that AMP performance can depend strongly on

!Code available at |https:/github.com/isaac-sim/IsaacLab/blob/main/source/
1saaclab_tasks/isaaclab_tasks/manager_based/locomotion/velocity/config/g1l/
rough_env_cfg.py.

2Code available at https://github.com/xbpeng/MimicKit,

TABLE IV: Reward formulation using Gaussian-shaped track-
ing scores.

Reward Terms Equation Weight

Task (Tracking)

Body Position cxp( (‘Btmgﬁ‘ zbEBm,gﬁ |pgles — prQ)/OBQ) 1.0

Body Orientation exp( (‘ngﬁ‘ ZbeBm,gﬁ [ log(Rges R )|2) /0. 42) 10

Body Linear velocity exp( (\Bc o DbeB, ot [viles — vy | )/1.02) 1.0
arge arge

Body Angular velocity exp( B ToeBuanges 05 = wh\|2)/34142) 1.0
arge arge

Anchor Position (‘xp( Hpmclmr Panchor||?/0- 32) 1.0

Anchor Orientation exp( — || log RfﬂﬁorR;Lhor)Hz/OAz) 1.0

Regularization

Action smoothness Haf —ap_1|? —0.1

Joint position limit Z L [max(l; — 6;,0) + max(6; — uj,0)] —10.0

Undesired self-contacts Zhéspe e > 1N] -0.5

TABLE V: Domain randomization parameters. ([-]: uniform

distribution)

Domain Randomization Sampling Distribution

Physical parameters

Static friction coefficients

Dynamic friction coefficients

Restitution coefficient

Default joint positions (except ankle) [rad]
Default ankle joint positions [rad]

Torso COM offset [m]

Lstatic ~ U[0.4, 1.3]

Hdynamic ~ U[0.4, 1.1]

erest ~ U[0, 0.5]

AGY ~ U[-0.01, 0.01]

Aef ~ U[-0.03, 0.03]

Az ~U[-0.025,0.025], Ay, Az~U[—0.05,0.05]

Root velocity perturbations
Root linear vel [m/s]

Push duration [s]

Root angular vel [rad/s]

Vg, vy ~U[—0.1,0.1], v, ~U[—0.05,0.05]
At ~ U[1.0, 3.0]

W, Wy, wz ~U[—0.1,0.1]

implementation details and careful tuning [38]], and we did not
have the bandwidth to fully explore this tuning space. For this
reason, we do not include AMP in the formal comparison, and
instead leave this result as a note for context.

TABLE VI: Training hyperparameters.

Motion Tracking Distillation
Architecture
[512, 256, 128]

[512, 256, 128]

Hyperparameter

Actor / Student MLP hidden dims
Critic MLP hidden dims

[2048, 1024, 512, 256, 128]
[512, 256, 128]

Activation function ELU ELU
Init noise std 1.0 0.01
Depth backbone - 3-layer CNN + GAP
Depth input resolution - 58 x 87
Depth output dim - 32
Training
Steps per environment 24 24
Max iterations 20,000 20,000
Learning rate 1x1073 3x107%
Schedule adaptive adaptive after 1000 iterations
Clip parameter 0.2 0.2
Entropy coefficient 0.005 0.001
Discount factor (y) 0.99 0.99
GAE A\ 0.95 0.95
Desired KL 0.01 0.01
Learning epochs 5 2
Mini-batches 4 96
Max grad norm 1.0 1.0
Distillation-Specific
Curriculum end epoch - 10,000
Distill loss type - mse
DAgger loss coefficient - 10.0



https://github.com/isaac-sim/IsaacLab/blob/main/source/isaaclab_tasks/isaaclab_tasks/manager_based/locomotion/velocity/config/g1/rough_env_cfg.py
https://github.com/isaac-sim/IsaacLab/blob/main/source/isaaclab_tasks/isaaclab_tasks/manager_based/locomotion/velocity/config/g1/rough_env_cfg.py
https://github.com/isaac-sim/IsaacLab/blob/main/source/isaaclab_tasks/isaaclab_tasks/manager_based/locomotion/velocity/config/g1/rough_env_cfg.py
https://github.com/xbpeng/MimicKit
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